Nonalcoholic Fatty Liver Disease

September 20, 2014
Charissa Chang, M.D.
Icahn Mount Sinai School of Medicine
New York, NY

Outline

- BackgroundEpidemiology
- Clinical challenges
 prediction of prognosis
 noninvasive diagnosis/staging
- Treatment

Current challenges/unmet needs:

- rising prevalence of NASH
- variable prognosis/difficulty counseling patients what to expect over time
- lack of effective pharmacologic therapies
- systemic disease process with significant comorbidities (diabetes, obesity, cardiovascular disease)

Indications for liver transplantation in the United States (2001-2009)

Rising Prevalence of NAFLD in the US (NHANES data)

Spectrum of NAFLD

Prevalence of NAFLD/NASH

	NAFLD	NASH
General adult population, US	17-50%	3-5%
Metabolic syndrome	59%	
Dyslipidemia	50%	
Diabetes	50-70%	25-30%
Obese	70%	25-30%
Morbidly obese	90%	35%

Survival is decreased in NASH, but not in simple steatosis

Mortality is increased in NASH compared to simple steatosis

overall mortality Odds Ratio Odds Ratio Study or Subgroup M-H, Fixed, 95% CI M-H, Fixed, 95% CI Weight Adams 2005 5.4% 2.13 [0.41, 11.15] Ekstedt 2006 14.1% 2.66 [1.03, 6.87] 28.9% 1.36 [0.64, 2.90] Matteoni 1999 25.2% 1.91 [0.90, 4.04] Rafiq 2009 Soderberg 2009 26.3% 1.70 [0.81, 3.59] 1.81 [1.24, 2.66] Total (95% CI) 100.0% Total events Heterogeneity: Chi² = 1.26, df = 4 (P = 0.87); I^2 = 0% 0.01 0.1 10 100 Test for overall effect: Z = 3.05 (P = 0.002)

NASH

simple steatosis

Liver-related mortality is increased in NASH compared to simple steatosis

liver-related mortality

		Odds Ratio		Odds	Ratio
Study or Subgroup	Weight	M-H, Fixed, 95% C	CI .	M-H, Fix	ed, 95% CI
Adams 2005	13.3%	3.71 [0.20, 70.19]	Ì		
Ekstedt 2006	10.2%	4.21 [0.20, 89.42]	ĺ	Ø.	· · · ·
Matteoni 1999	20.4%	5.91 [0.71, 48.83]		<u> </u>	-
Rafiq 2009	27.5%	7.66 [1.61, 36.52]			
Soderberg 2009	28.6%	5.17 [1.03, 26.06]			-
Total (95% CI)	100.0%	5.71 [2.31, 14.13]			•
Total events					
Heterogeneity: Chi ² =	0.27, $df = 4$	$(P = 0.99); I^2 = 0\%$	0.01	01	1 10 100
Test for overall effect:	Z = 3.77 (P	= 0.0002)	0.01	0.1 steatosis	1 10 100 NASH

Take home point #1

 Not all patients with fatty liver are the sameimportant to distinguish patients with "simple steatosis" from those with NASH

Natural History of NASH

AASLD Liver Meeting 2013 Abstract #577 (Kleiner, et al): Natural History of Non-alcoholic Fatty Liver Disease in Adults: A Paired Biopsy Study from the NASH CRN

n=359 patients
mean age 47
mean time between biopsies: 4.4 years
(range: 1 – 17.3)

regression,

103, 29%

Factors associated with fibrosis progression:

Ballooning
Mallory-Denk bodies
Caucasian race

AASLD Liver Meeting 2013 Abstract #602: (Brunt, et al) Progression to bridging fibrosis in NAFLD over 4 years in the NASH CRN

- Aim: Identify predictors of progression to advanced stage NASH
- Methods: adults enrolled in NASH CRN with paired biopsies first biopsy fibrosis stage < 3 endpoint- progression to bridging fibrosis or cirrhosis
- Compare baseline factors between progressors vs non-progressors

Abstract #602: (Brunt, et al) Progression to bridging fibrosis in NAFLD over 4 years in the NASH CRN

- Results:
 270 patients
 mean 4.4 years between biopsies
 16% with progression to bridging fibrosis/cirrhosis
- Statistically significant baseline predictors of progressors as compared to non-progressors:

older age higher ALT, AST, glucose DM metabolic syndrome

Abstract #602: (Brunt, et al) Progression to bridging fibrosis in NAFLD over 4 years in the NASH CRN

Predictors of progression (multivariate model):

	OR	95% CI	р
Portal inflammation	2.14	1.01-4.53	0.047
Acidophil bodies	2.3	1.03-5.16	0.04
Mallory Denk bodies	4.91	1.68-14.37	0.004
Metabolic syndrome	6.46	0.98-42.53	0.05
ALT	5.24	1.78-15.40	0.003

Summary

- Patients with NASH have a variable prognosis
- Older age, metabolic syndrome, DM, and elevated ALT correlate with progression to advanced fibrosis
- Baseline histologic features aid in prediction of fibrosis progressors
- Consider liver biopsy in patients with these high risk clinical features for fibrosis staging and prognosis estimation

Diagnosis

Clinical Presentation

Asymptomatic Symptomatic

liver enzyme elevation fatty liver on imaging

Decompensated cirrhosis Hepatocellular carcinoma

hepatomegaly fatigue

Clinical Approach:

Challenges in the Diagnosis of NASH

- Imaging does not distinguish between simple steatosis and NASH
- Aminotransferases not reliable
- Liver biopsy subject to sampling variability
- Noninvasive tests for diagnosis and staging of NASH under investigation

Noninvasive diagnosis of steatosis

<u>Ultrasound</u> Sensitivity 83-89% Specificity 93-100%

CT Sensitivity 86% Specificity 87%

Noninvasive diagnosis of steatosis

Magnetic Resonance Spectroscopy

Transient Elastography- CAP

Sensitivity>90%

Controlled Attenuation Parameter

Magnetic Resonance Elastography

Simple steatosis inflammation without fibrosis fibrosis

MR Elastography for distinguishing NASH vs simple steatosis

Threshold (kPa)	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
2.74	94	73	85	89
2.90	83	82	88	75

Figure 2. Distribution of fibrosis and MR elastography readings for the entire cohort

Figure 1. Diagnostic accuracy for MR elastography for advanced fibrosis in NAFLD

Sensitivity	0.86 (0.65-0.97)
Specificity	0.91 (0.83-0.96)
PPV	0.68 (048-0.84)
NPV	0.97 (0.91-0.99)

Noninvasive scoring systems

```
    NAFLD Fibrosis score (http://nafldscore.com)
age, BMI
hyperglycemia
platelet count, albumin
AST/ALT ratio
```

- 2. APRI AST/platelet ratio index
- FIB-4 score age, AST, platelets, ALT
- 4. BARD score BMI, AST, ALT, DM

Treatment

Published randomized controlled treatment trials for NASH

Insulin sensitizers

Pioglitazone Belfort NEJM 2006

Sanyal NEJM 2010 (PIVENS)

Rosiglitazone Ratziu Gastro 2008 (FLIRT)

Ratziu Hepatol 2010 (FLIRT-2)

Rosiglitazone + Metformin

Torres Hepatol 2011

• Vitamin E Sanyal NEJM 2010 (PIVENS)

Pentoxifylline Zein Hepatol 2011

Meta Analysis: Insulin sensitizing agents for NASH

Study or Subgroup	Weight	Odds Ratio M-H, Fixed, 95% CI	Odds Ratio M-H, Fixed, 95% CI
Aithal 2009	14.8%	1.64 [0.50, 5.35]	
Belfort 2006	14.2%	1.71 [0.52, 5.64]	
Ratziu 2008	14.6%	0.96 [0.25, 3.72]	-
Sanyal 2004	3.1%	1.00 [0.05, 18.57]	
Sanyal 2009	53.3%	1.39 [0.73, 2.65]	-
Total (95% CI)	100.0%	1.40 [0.87, 2.24]	◆
Total events			
Heterogeneity: Chi ² = 0.52, df = 4 (P = 0.97); l ² = 0%			
Test for overall effect: Z = 1.39 (P = 0.17)			0.01 0.1 1 10 100 controls TZD

		Odds Ratio	Odds Ratio
Study or Subgroup	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Haukeland 2008	53.6%	0.26 [0.03, 2.57]	
Idilman 2008	15.5%	0.78 [0.04, 14.75]	-
Shields 2009	16.3%	3.20 [0.42, 24.42]	
Uygun 2004	14.6%	1.00 [0.06, 17.41]	
Total (95% CI)	100.0%	0.93 [0.31, 2.83]	•
Total events			
Heterogeneity: Chi2 = 2.62, df = 3 (P = 0.45); I2 = 0%			
Test for overall effect: Z = 0.13 (P = 0.90)		0.01 0.1 1 10 100 controls metformin	

Challenges in identifying pharmacologic treatment for NASH

- Rebound effect after discontinuation of treatment
- Long term safety concerns:

Rosiglitazone Rosen NEJM 2010

Vitamin E Miller Ann Int Med 2005

Klein JAMA 2011

Identification of appropriate therapeutic targets

insulin resistance

inflammation

altered lipid metabolism

obesity

fibrosis

Validation of noninvasive markers of disease activity and staging

Current management approach

 Diagnose and manage any comorbid features of metabolic syndrome

NAFLD: proposed clinical approach

Summary

- Patients with NASH have a variable risk for disease progression
- Older age, DM, metabolic syndrome and elevated ALT are associated with advanced fibrosis
- Effective pharmacologic treatments are still lacking
- Target higher risk individuals for staging liver biopsy, aggressive lifestyle modification, and therapeutic clinical trials
- Don't overlook comorbid metabolic syndrome in patients with NASH- cardiovascular disease remains the leading cause of mortality in patients with NASH