My Patient Has Claudication

September 20th, 2014

Nicholas Petruzzi, MD
Interventional Radiologist
Atlantic Medical Imaging

What is Claudication?

- Intermittent Claudication
 - Derived from latin word for "limp"
 - A reproducible discomfort of a group of muscles that is induced by exercise and relieved with rest.

Types of Claudication

- Intermittent Vascular Claudication
 - Typically due to PAD
- Venous Claudication
 - Typically due to venous insufficiency
- Neurogenic Claudication
 - Typically due to LSS (Lumbar Spinal Stenosis)

Differentiating between types

	Vascular Claudication	Venous Claudication	Neurogenic Claudication
Quality of pain	Cramping	"Bursting"	Electric shock-like
Onset	Gradual, consistent	Gradual, can be immediate	Can be immediate, inconsistent
Relieved by	Standing still	Elevation of leg	Sitting down, bending forward
Location	Buttock, thigh, calf	Whole leg	Poorly localized, can affect whole leg
Legs affected	Usually one	One or both	Often Bilateral

Overall this is not easy... But Noninvasive testing can help!

Vascular Claudication and PAD

- PAD occurs in approximately 1/3 of all patients
 - Risk increases over age 70
 - Higher risk at age 50 in smokers or DM
- Strong association with CAD
 - Increased risk of stroke, MI, cardiovascular death
- Progressive disease in 25% with intermittent claudication and ultimately limb threatening ischemia
- Results in impaired quality of Life, Limb Loss, and early mortality

Outcomes in PAD

H&P distinguishers

- History of known PAD or significant PAD risk factors
- Symptoms triggered with standing, relieved by sitting, thigh pain, and shopping cart sign suggests Neurogenic ¹
- Symptoms triggered with walking, relieved with standing, and below knee pain suggests Vascular
- Trophic Signs can help
 - Skin atrophy, thickened nails, hair loss, dependent rubor, ulceration, gangrene

Classification Systems

Fontaine		Rutherford		
Stage	Clinical	Grade	Category	Clinical
I	Asymptomatic	0	0	Asymptomatic
IIa	Mild claudication	I	1	Mild claudication
IIb	Moderate to severe claudication	I	2	Moderate claudication
		I	3	Severe claudication
III	Ischemic rest pain	II	4	Ischemic rest pain
IV	Ulceration or gangrene	III	5	Minor tissue loss
		III	6	Major tissue loss

Risk Factors

Data from the Framingham Heart showing the odds ratio for developing intermittent claudication

How reliable is H&P for diagnosing PAD?

- Use of the history alone to detect peripheral arterial disease will result in missing up to <u>90</u> percent of cases.
- Asymptomatic patients with abnormal ABI have 50% increased risk of cardiovascular complications
- Therefore, American Heart Association recommends screening certain high-risk populations

Who should undergo testing?

- Symptomatic Patients
 - Vascular claudication, ischemic rest pain, ulceration, trophic changes
- High Risk Patients
 - Age <50 years, with diabetes plus additional RF
 - (smoking, dyslipidemia, hypertension, or hyperhomocysteinemia)
 - Age 50 to 69 and a history of smoking and diabetes
 - Age 70 or older
 - Leg symptoms with exertion (suggestive of claudication) or ishemic rest pain
 - Abnormal lower extremity pulse examination
 - Known atherosclerotic coronary, carotid, or renal disease

Ankle Brachial Index

- Workhorse of the lower extremity vascular evaluation
- Easy to perform
 - Blood pressure cuffs, Doppler
 - Ankle to brachial artery pressure
 - Sensitivity ~ 75%, Specificity ~ 90%
 Depending on cutoff value (0.90 0.95)

Normal	0.96	
Claudication	0.50-0.95	
Rest Pain	0.30-0.49	
Tissue loss	<0.30	
Significant change	0.15 or more	

ABI

- If claudication symptoms but normal rest ABI, exercise ABI should be performed ⁴
- False negatives
 - Non-compressible vessels
 - Typically diabetics or renal patients
 - May lead to higher than normal ABI (>1.3)
 - Toe pressures may help (>0.7 normal)
 - Concomitant subclavian or brachiocephalic disease

Pulse Volume Recordings

- Consider in high-risk individuals or abnormally elevated ABI
- Combines segmental pressures with waveforms
- Technique:
 - Pneumatic Cuff inflated at multiple Levels
 - Inflated to 65 mm Hg

Pulse Volume Recordings

- Advantages:
 - Not Impacted by Calcification
 - More sensitive than ABI
 - Allows for waveform analysis
- Disadvantages:
 - Lacks very specific anatomic information
 - More time consuming than ABI

Duplex Doppler

- More specific in location of stenosis
- Also screen for AAA
- Great for surveillance of bypass grafts
- Can semi-quantify degree of stenosis
- Overall about 80% sensitivity and 90% specific

Advanced Testing - CTA

- Advantages
 - Provides good anatomic localization
 - Can give temporal information on delayed imaging
 - Good evaluation of aorto-iliac vessels
 - Speed
 - Ability to evaluate stented arteries
 - Pacer safe

Advanced Testing - CTA

- Disadvantages
 - Dense calcification difficult to assess patency
 - Radiation
 - Distal vessel limited
 - Renal failure/contrast allergy

Advanced Testing CTA

- Axial imaging
- Maximal Intensity
 Projection
- Shaded SurfaceDisplay

Advanced Testing - MRA

- Advantages
 - Renal Impairment
 - Gad vs. Time of Flight
 - Good anatomic Localization
 - Also gives temporal information
- Disadvantages
 - Uncooperative patient
 - Claustrophobia
 - Metal artifact
 - Pacemakers/ICDs
 - Lack of visualization of calcium

Medical Management

- All Patients with PAD
 - Immediate Smoking Cessation (Most beneficial modifiable risk factor)
 - Antiplatelet Agents
 - Diabetes Control
 - Blood Pressure Reduction
 - Consider Ace Inhibitor usage
 - Lipid Control
- Symptomatic Patients
 - Consider Cilostazol (Pletal) 100 mg PO BID
 - Exercise program!

Management Cont.

 Intermittent Claudication pts should undergo a 3 Month trial of risk factor modification and exercise program

 Critical Limb Ischemia (rest pain or tissue loss) should be worked up for possible revascularization

Management - Asymptomatic

Figure 2. Diagnosis and Treatment of Asymptomatic PAD and Atypical Leg Pain

Management – Claudication

Revascularization

- Endovascular tx is indicated for individuals with PAD and vocational/lifestyle disability where clinical features suggest **reasonable** likelihood of improvement from intervention and there is inadequate response to exercise/medical therapy or inflow disease.
- Indicated in all cases of critical limb ischemia (CLI), defined as Rutherford 4-6.
- AHA Level IA recommendation

TASC II Guidelines

- What defines reasonable likelihood?
 - Trans Atlantic Inter-Society Consensus (TASC)
 Guidelines attempt to define this

Endovascular

Type A Lesions

- . Single Stenosis ≤10 cm in Length
- . Single Oclusion ≤5 cm in Length

Endovascular

- Multiple Lesions (Stenoses or Occlusions), Each ≤5 cm
- Single Stenosis or Occlusions ≤15 cm Not Involving the Infrageniculate Popliteal Artery
- . Single or Multiple Lesions in the Absence of continuous Tibial Vessels to Improve Inflow for a Distal Bypass
- . Heavily Calcified Occlusion ≤5 cm in Length
- · Single Popliteal Stenosis

- Multiple Stenoses or Occlusions Totaling >15 cm With or Without Heavy Calcification
- Recurrent Stenoses or Occlusions That Need Treatment After 2 Endovascular Interventions

Surgery

Surgery

Type D Lesions

- . Chronic Total Occlusions of CFA or SFA (>20 cm, Involving the Popliteal Artery)
- · Chronic Total Occlusion of Popliteal Artery and Proximal Trifurcation Vessels

Techniques

- Basic
 - POBA Plain Old Balloon Angioplasty
 - Stenting
 - Bare Metal, covered, drug eluting
- Advanced
 - Typically required in chronic occlusions
 - Subintimal recanalization and angioplasty
 - Retrograde Transpedal Approach
 - Re-Entry Devices
 - Atherectomy

Case

- 49 yo male with critical limb ischemia
- Rest pain and nonhealing wounds 1st and 5th toes (Rutherford 5)
- ABI 0.2 on right; 0.4 on left
- CTA showed focal occlusion of right common/ext iliac. Also occlusion left common/ext iliac
- Revascularization indicated for CLI

Case

- 65 yo F, bilateral resting leg pain, no tissue loss (Rutherford 4)
- PMH: CAD, Carotid stenosis, Aortic Stenosis
- ABI < 0.3 bilateral
- Revascularization for CLI
- CTA runoff performed to evaluate disease burden and plan approach

Arteriogram

AFTER

AIVI Medical Imaging

Follow-up

- Discharged home same day
- Near immediate improvement in rest pain
- ABI's 0.9 bilateral 1 month follow up
- Resting pain completely resolved

Outcomes and Data

- Focal iliac and femoral lesions have clear cut benefit from either PTA and/or stenting
- Treatment of occlusive femoropopliteal disease continues to show prolonged patency with newer technology
- Treatment of SFA occlusions with heparin bonded stent grafts exhibits similar primary patency at 4 year (48 month) compared with conventional fem-pop bypass grafting with synthetic conduit ⁷

Take Home Points

History alone can miss up to 90% of peripheral arterial disease cases

PAD is a progressive disease in 25%, including asymptomatic presentations

Early detection can reduce cardiovascular related morbidity/mortality

Take Home Points

- ABI screening study of choice but consider advanced modalities in high clinical suspicion cases
- Patients with critical limb ischemia (rest pain or tissue loss) should be offered revascularization
- Endovascular techniques continue to evolve with promising outcomes that improve QOL and reduce risk of amputation

References

- 1. Nadeau M, et al. The reliability of differentiating neurogenic claudication from vascular claudication based on symptomatic presentation. Can J Surg. Dec 2013 56(6): 372-377.
- 2. Hirsch AT, Criqui M et al. Peripheral Arterial Disease Detection, Awareness, and Treatment in Primary Care. JAMA 2001; 286: 1317
- 3. Hirsch AT et al. J Am Coll Cardiol 2006; 47:1239–1312.
- 4. Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA 2005 Practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic), etc. *Circulation* 2006;113(11):e463-e654 Hooi JD, et al. J Clin Epidem 2004; 57:294
- 5. Criqui MH, et al. The generalized nature of atherosclerosis: how peripheral arterial disease may predict adverse events from coronary artery disease. Vascular Medicine. (3):241-245, 1998.
- 6. Criqui MH et al. N Engl J Med. 1992;326:381-386
- 7. Begelman S, et al. Noninvasive diagnostic strategies for peripheral arterial disease CLEVELAND CLINIC JOURNAL OF MEDICINE VOLUME 73 SUPPLEMENT 4 OCTOBER 2006
- 8. ACCF/AHA Pocket Guideline November 2011. Management of Patients With Peripheral Artery Disease (Lower Extremity, Renal, Mesenteric, and Abdominal Aortic)
- 9. L. Norgren, WR et al. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II) . Journal of Vascular Surgery. 2007. 45(1): S5-S67
- 10. McQuade K, et al. Fouryear randomized prospective comparison of percutaneous ePTFE/nitinol selfexpanding stent graft versus prosthetic femoralpopliteal bypass in the treatment of superficial femoral artery occlusive disease. J Vasc Surg. 2010 Sep;52(3):58490;
- 11. Kim E, Wattanakit K, Gornik H. Using the ankle-brachial index to diagnose peripheral artery disease and assess cardiovascular risk. Cleve Clin J Med 2012;79:651–61.

Atlantic

AMI Vein Center & Vascular Clinic

- Free ABI screenings
- Free venous duplex
- Free consults if abnormal
- Expertise in diagnosing and treating vascular and venous claudication

 Patients or Physicians can schedule the free testing/consult online at www.AMI-IR.com

